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Scaling behavior for the pressure and energy of shearing fluids
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Recent simulation work has established that the widely accepted mode-coupling theory for the strain rate
dependence of the pressure and energy of simple fluids under(gbgagnergy and pressure are functions of
strain rate to the powe}) is observed in the vicinity of the triple point. Away from the triple point, the scaling
exponent of the strain rate was seen to be closer to Zihauggesting a possible analytic behavior. In this
paper, we accurately determine the scaling exponent behavior for a Lennard-Jones fluid in the dense fliud
region and find that it varies continuously betweeh.2 and~2 as a function of density and temperature, thus
confirming its nonanalyticity. We furthermore find that the behavior is characterized by a simple linear function
of density and temperature.
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In recent publicationgl,2] we have demonstrated by non-  Our simulations are performed on a Lennard-Jones 6-12
equilibrium molecular dynamic$NEMD) simulations that fluid of 500 atoms. We use a cutoff of=3.50, which is a
the accepted behavior of simple fluids under planar shearalue often cited in the literature by other workers. To char-
flow, namely that the pressure and energy are linear functionacterize the phase diagram for this cutoff, we perform Gibbs
of %%, where? is the strain rate, is only strictly true in the ensemble calculations for the liquid-vapor coexistence curve
vicinity of the triple point. In both these papers we showed[4,5]. The solid-liquid coexistence is taken from the literature
that away from the triple point the behavior of the exponen{6], and the phase diagram is presented in Fig. 1. Knowledge
in the strain rate was closer to 2, suggesting a possible anaf the phase diagram ensures that we probe only the dense
lytic dependence. In this paper, we explore this scaling exfluid region of the thermodynamic state space available to us
ponent dependence with greater precision and over a signifin the weak field limit. The normal convention was adopted
cant range of densities and temperatures, spanning the derfee the reduced density pf =po°), temperature T*
fluid region of the phase diagram for the Lennard-Jones=kT/¢), energy E* =E/¢), pressure * =po~/e), strain
fluid. We find a remarkably simple relationship clearly dem-rate (¥* =[ o(m/&)¥?]¥), and time(r* =[e/ma?]*?7). All
onstrating that the scaling exponent is a continuous lineaquantities quoted in this work are in terms of these reduced
function of temperature and density. Significantly, the coef-quantities and the superscript asterisk will be omitted. Within
ficients of these linear terms must be either universal or onlyhe reduced temperature range ©0.69 to 1.25 we may
dependent on the intermolecular potential. The exponent vasafely conduct simulations between reduced densities of
ies continuously betweerr1.2 and 2. There is thus nothing ~0.7 to 0.84 and remain in the dense fluid region in the
special about thé exponent predicted by the mode-coupling weak field limit.
theory of Kawasaki and Guntd®]. While it does occur near
the triple point, it also occurs at higher density and tempera- 4 ¢

ture state points. That previous NEMD simulations have con- ]
curred with the mode-coupling theory prediction of @x- 164 L‘t”
ponent is a fortuitous consequence of performing simulations : F
at the triple point. Agreement with the mode-coupling theory 1.4
prediction breaks down at most other state points. This dis- =128
covery indicates that there is a compelling need to reexamine” 121 G)Xx’"( % L s
the theoretical basis of the mode-coupling theory and either 1043 Vil " x %
reformulate it such that it remains valid in the entire dense ‘g ‘8& 3
fluid phase, or else come up with an alternative theoretical g %
foundation. K %

In our simulations, we have ensured to explore only the 0.6 T=0.687
dense fluid phase. We note here that “fluid” in this strict T —T— ;
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sense may refer to liquid-vapor coexistence in some cases,

but we have observed that this does not influence the shape s

qf t_he St_ram rat_e profiles. _We take care _nOt to probe the FIG. 1. Phase diagram for the 6-12 Lennard-Jones fluid with a

liquid-solid coexistence region, as the strain rate profiles dQ toff radius ofr.=3.50. The triple point is located atp(T)

not display simple power-law behavior in this region. =(0.85,0.687), in agreement with R¢6], and the critical point is
estimated asd,T)=(0.31,1.26). The solid-liquid line is also ob-
tained from[6(b)]. The gas vapor, liquid, fluid, and solid phase

*Author to whom correspondence should be addressed. E-maikgions are indicated by the symbdls V, L, F, and S, respec-
address: btodd@swin.edu.au tively.
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Our NEMD simulations were conducted using the stan-
dard thermostatted Slid@quations of motiofi7], the details 2.0
of which may be found in our previous wofk,2], and we
use a Gaussian thermostat. Simulation run lengths varied ac
cording to the temperature/density requirements. For in- 187
stance, simulations at low densifyequiring long runs for
good statistics consisted typically of trajectories of
400 00@, where7=0.001 is the time step. Averages of all
guantities are then taken over 30-40 trajectories of this
length. For high densities this could be reduced-t0 tra- 144
jectories of 200000 each while still preserving the same
level of statistical accuracy. In all figures presented, error
bars represent the standard error. 1.2

In what follows, we do not assume any value of the scal-
ing exponent in either the energy or press(esy.,3 or 2), P
but determine its value priori via a least-squares fit of the
guantity (energy or pressuyas a function of strain rate. We
assume only that the total energy and pressure observe
power-law dependence of the form

@ 1.6

FIG. 2. « as a function of density for different temperatures. All
open symbols represent fits determined from the potential energy
profile, whereas solid symbols refer to fits determined from the
pressure profile.

— he
E=Eotar’, tential energy to determine (rather than total energys the
_ - w temperature is constrained to a constant value and thus does
P=po+by”, @) not contribute to the shape of the energy versus strain rate
rofile. The temperatures span the entire range of possible
alues wherein the fluid will remain in the dense fluid region
over the range of densities studied. There are three signifi-
Bant features to note¢i) at all temperatures, the exponenis
alinear function of density, maximum at low densitiés2),
decreasing continuously to a minimum at high densities
~1.2); (ii) the value ofa is, within error barsjdentical for

oth U and p; and (iii) the dense liquid phase is clearly

whereEy andp, are the total internal energy and pressure a{j
equilibrium, anda and b are constants that depend on the
density and temperature. This is certainly justifiable based o
our previous worK1,2] and that of Matinet al. [8], and we
typically find x>~ 10" ° for the fits to the data presented in
this paper. We then extract the value @ffor each p,T)
state point, where for each state point we probe the range

= y=0.6 in steps of 0.1 reduced strain rate urigdditional  onanalytic in strain rate. Furthermore, the widely accepted
points were used to probe the Newtonian regime)0 \g1ye ofa=2 is only true in avery smallregion of the full

<0.1). This range encompasses both the Newtonian ang\ajlaple state space, lying in a range of densities between
non-Newtonian regimes. For simple flylds, a smgl_e exponenip g 0.9, depending on the temperatuiecreasing density
seems to be able to accurately describe the scaling behavigji, increasing temperature

of the pressure and energy at any particular state point, There s another significant feature to come out of this

within the range of uncertainties in our simulation data'study. The exponent can be expressed as a simple linear
Within these uncertainties we were unable to observe differsnction of both temperature and density:

ent power-law behavior for the Newtonian region within the

strain rates 6 y=<0.1. This is clearly not the case for more a=A+BT—Cp, 2

complex polymeric fluids, in which different scaling expo-

nents can be found in the Newtonian and non-NewtoniamwhereA, B, andC are coefficients with the constant values

regimes(see, for example, Ref9]). Even if greater resolu- A=3.67+0.04, B=0.69+0.03, and C=3.35+0.03. The

tion were able to differentiate between different energyivalues ofA, B, andC are either universally true for all single-

pressure scaling parameters for the Newtonian and noreomponent simple fluidée.g., %, 2, and %, respectively, or

Newtonian regions in a simple fluid, our results are still validelse must be functions only of the intermolecular potential.

in the non-Newtonian regime. The significance of such a simple relationship is that it may

In Fig. 2 we plot the exponerd computed for both the now be possible to predict the pressure, stress, energy, etc.,

total potential energy per particiéJ) and pressurép) as a  of at least simple nonequilibrium fluids as a function of

function of density for three different temperatures. Here strain rate aany arbitrary thermodynamic state point in the

is defined astEi’\"juij IN, whereu;; is the interatomic po- dense fluid phase. Equati¢®) thus acts in an analogous way

tential energy between atomandj, andN is the total num-  as an equation of state would, and can be used to characterize

ber of atoms in the simulation. The pressure is calculated athe scaling exponer.

p=3Tr(P), whereP is the pressure tensg7]. We use po- We note here that we did not apply any long-range cor-
rections to our pressure or energy calculations. This is in fact
unnecessary, as the long-range correction would only shift

These equations are named Sllod because of the close relatiothe (p,U) values by a constant amoufit0]; the shapes of
ship to the Dolls tensor algorithm. the profiles(from which the a are calculatedremain un-
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FIG. 3. @ as a function of density &= 1.0 for cutoff values of T

r.=3.50 andr.=L/2, whereL is the simulation box length.

o FIG. 4. « as a function of temperature at=0.8442. Circles
changed. However, to ensure thatis independent of the represent fits obtained from the potential energy profile, and tri-
value of cutoff used, we performed simulations at a cutoff ofangles represent fits obtained from the pressure profile.

half the simulation box lengthi,=L/2 at a fixed temperature
of T=1.0 over a range of liquid densities. Note thatwill
be different for eachp studied. We compare the value of
calculated for this system with those of our fixed cutaff (
=3.50) in Fig. 3 and find perfect agreement.

A characteristic plot ofxr computed for botiJ andp as a

nonanalytic in strain rate, but that the accepfeexponent

has no special place in thermodynamic state space, occurring
in a very limited region of relatively high density. A simple
singlelinear relationship has been found that relates the ex-

) ' . . onent ofboththe pressure and energy strain rate profiles as
function of temperature at a fixed density of 0.8442 is show . : SRR
in Fig. 4. As expected, the relationship is linear, but this time, function of temperature and density. While it is likely that

. - this linear relationship will be true for other intermolecular
W.'th a positive slppe. _Clegrly, one could plot a three'potentials(e.g., including those with three-body interaction
dimensional curve in whicle is c_hsplayed asa func.t|on ar terms, an intriguing question remains: are the values of the
andp, put as the curve quld in fact t.)e a plane in th.ermo'coefficients of Eq(2) (A,B,C) independent of intermolecu-
dy.”am'c. state space there is no new insight to be gained %r potential, and hence “universal,” or functions thereof?
dom_g this. e . ._We are endeavoring to answer this question. It is hoped that

F_mally, to ensure that the fiuid is indeed nonanalytic N our work will inspire other liquid state theorists to reexamine
strain rate, we also included the next aIIowabI_e fourth—orqeLEhe mode-coupling theory of Kawasaki and Gunton and ei-
term in _the prgs43ure and energy Taylor series EXpansionge attempt to extend its validity into wider regions of ther-
(proportional t0y*) (see Ref[2]), but found that the fit can modynamic state space, or else invent an alternative theoret-

be extremely poor at state points away from regions Wher?cal framework to explain the observations reported here.
a~2. We also tried fitting an exponential function to the

data, with similarly poor results. We are thus confident that a J.G. thanks the Australian government for financial sup-
simple power-law relationship is valid within the strain ratesport. G.W. thanks the School of Information Technology for
studied in this paper. financial support. We acknowledge the Swinburne Super-

To conclude, we have fully characterized the shear rateomputer Centre and the Australian Partnership for Ad-
scaling exponent behavior for the pressure and energy ofanced Computing for generous allocations of computer
simple atomic Lennard-Jones fluids. We find that the fluid istime.
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